

Floral rewards (pollen, nectar) in the Mediterranean under conditions of climate change

<u>Theodora Petanidou</u>, Krista Takkis, Thomas Tscheulin Laboratory of Biogeography & Ecology Department of Geography, University of the Aegean <u>t.petanidou@aegean.gr/</u>

VIII Mediterranean Bee-keeping Forum, 22-23 November, Chefchaouen, Moroc

Lesvos: habitats

Volcanic rocks

Also: serpentine, limestone...

Extensive olive groves (Olea europaea)

Pine forest (Pinus brutia)

High scrub / maquis

A land rich in habitat types

Chestnut forest (Castanea sativa) Oak forest(Quercus coccifera)

Grazed land

Cultivated land

Ephemeral wetland

Land of flowers: 1607 flowering plant species

Land of bees: > 500 bee species!

Research in the Laboratory of Biogeography & Ecology 1. Ecogeography: Mediterranean landscapes

Research in the Laboratory of Biogeography & Ecology

2. Ecology – Biogeography: partnership between flowers and pollinators

- 1. Diversity (plants, pollinators mainly bees & hoverflies)
- 2. Architecture of the mutual relationships at community level (plant–pollinator networks)
- 3. Ecophysiology of the floral traits:
 - Primary (rewards) & secondary attractants....
- 4. Landscape ecology: which habitats for pollinator guilds & their interactions?
- 5. Threats to p-p partnership in the Aegean/Mediterranean?
 - ... unconcern/ ignorance
 - Grazing
 - Fires
 - Telephony antennas
 - Excessive bee-keeping
 - Climate change
 - Invasive species

Pollination: an important ecosystem service!

- 1. decisive and important first step for sexual reproduction ... species evolution
- 2. an invaluable ecosystem service ... wild life & landscape preservation

 pivotal keystone process in almost all productive terrestrial systems

The Mediterranean: a land for flowers.

- 1. Biogeography (neighbors, Pleistocene)
- 2. Geology (history, volcanic activity)
- 3. Ecology (niche/habitat diversity)
- 4. Human presence and history

The Mediterranean: a land for flowers... and bees

Driving factors for high bee diversity

- 1. Dryness and hotness
- 2. Diversity of flowering plants
- 3. Availability of bare ground, diversity of nesting sites & materials
- 4. Seasonality of vegetation
- 5. Frequent events of disturbance (e.g. fires)
- 6. Traditional management (grazing, surface ploughing every 2-3 y)

The Mediterranean: a land for flowers... and bees

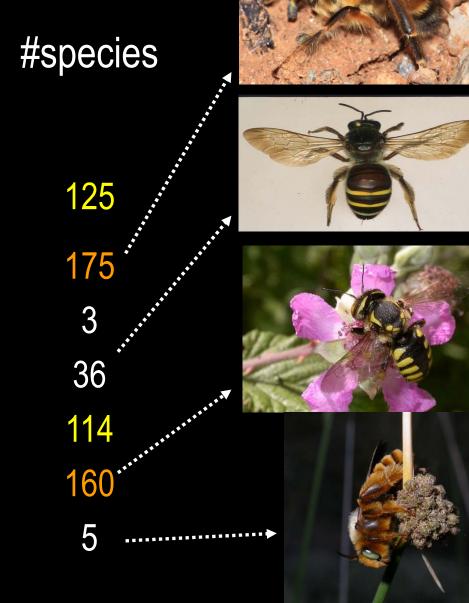
Nests of Chalicodoma parietina nestorea

...including homes for people

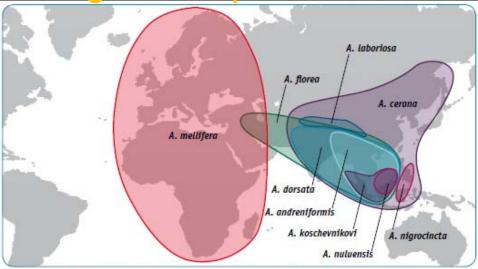
Wild bees

Bee family

Colletidae

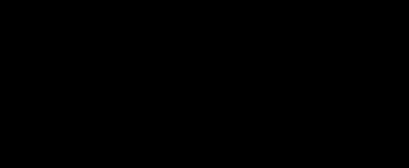

Halictidae

Melittidae

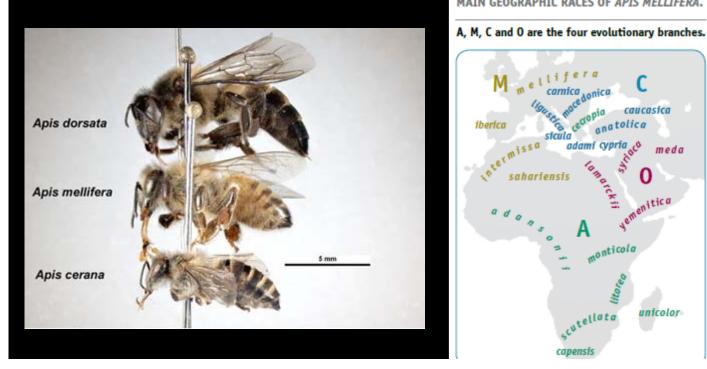

Megachilidae

-----Apidae

Anthophoridae



The genus Apis


Source: Franck et al. 2000; Le Conte and Navajas 2008. Figure printed with permission from P. Franck (Franck 1999).

MAIN GEOGRAPHIC RACES OF APIS MELLIFERA.

THE NATURAL RANGE OF APIS MELLIFERA.

The natural range of Apis mellifera mellifera coincides with the 15-20° zone (July average temperatures).

Nectar: a floral primary attractant par excellence!

1/2 primary attractants (= floral rewards) to bees/hbs

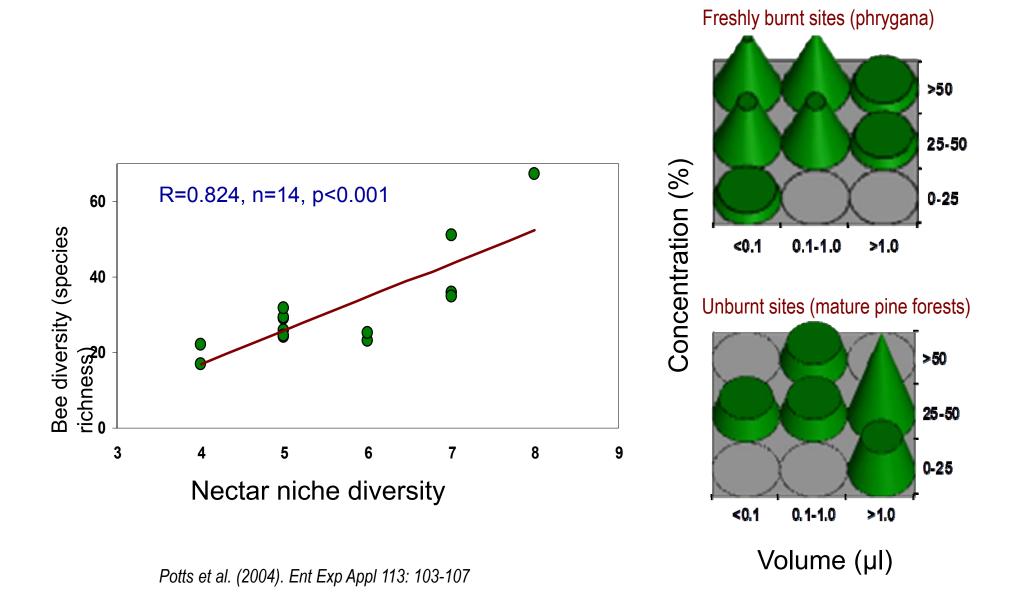
Solution of sugars in water

- glucose, fructose, sucrose + >20 other rel. simple sugars
- sugar content: 15 45 …75% (w/w sucrose)
- high variability

other constituents

• amino acids, minerals, pectines, phenols, fats, proteins, antioxidants, antibiotics, alkaloids

Provides: fuel (high calorific value!), water


Secretion rate

•depends on the plant, age, ecological factors (T, RH, light, water regime etc)

Nectar niche diversity shapes bee diversity

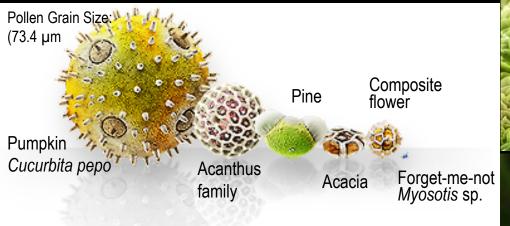
Nectar: sugars, but also amino acids!

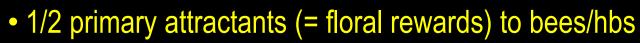
Amino acids	Mean quantity (pmoles/flower)	SE	% of total amino acids
Arginine	78	17.4	2.8
Asparagine	152	43.8	5.6
Aspartic acid	234	140.0	8.6
Glutamic acid	66	16.7	2.4
Glycine + threonine	218	35.3	8.0
Histidine + glutamine	231	61.6	8.5
Isoleucine	33	6.6	1.2
Leucine	52	10.1	1.9
Lysine	68	11.9	2.5
Methionine	55	23.8	2.0
Ornithine	101	17.5	3.7
Phenylalanine	715	229.5	26.2
Serine	166	26.2	6.1
Tryptophan	43	11.2	1.6
Tyrosine + alanine	250	40.2	9.2
Unknown	71	21.5	2.6
Valine	119	18.7	4.4
H-serine	2	2.1	0.1
β-Alanine	3	1.9	0.1
GABA (y-aminobutyric acid)	75	24.6	2.7
Total amino acids	2731	469.1	100.0

Amino acids in the floral nectars of phrygana by HPLC analysis

Essential (indispensable) amino acids for bees

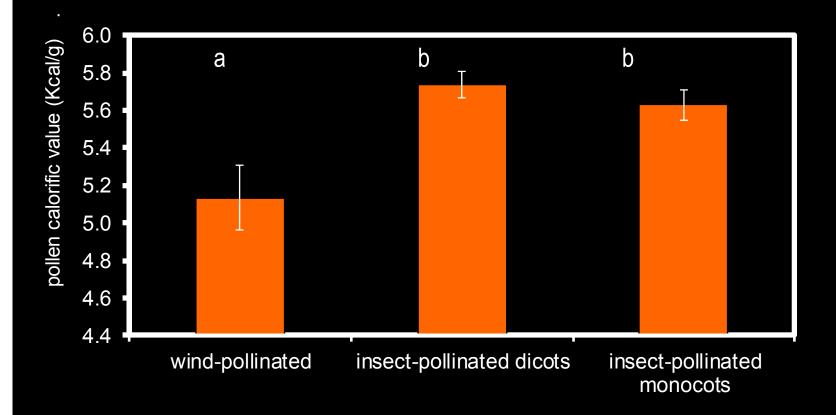
Phagostimulatory effects


Nectar: sugars vs. amino acids


Table 5. Relationship of pollinator guilds and families to different nectar parameters of the floral nectars of the phryganic plants visited by each pollinator group. We give multiple regression results (adjusted overal \mathbb{R}^2 and partial coefficients) of flower visitors (numbers of visitor species of a certain insect guild visiting a plant species) over the total nectar volume, total AA content and total sugar content (glucose + fructose + sucrose) contained in the nectars of the plant species visited. All data were transformed (x' = ln(x+1)). No significance was found for: total sugars and the insect guilds and families missing from the table. *: $\mathbb{P} < 0.05 < \mathbb{P} < 0.01$, ***: $0.01 < \mathbb{P} < 0.001$.

No			T Loop		Andreal	1.1.1		· · · · 1	11.4			1.1		O:1-	Distant		C	1.1.1.			Wasse	
Nectar traits	LT bees				Anthophoridae			Megachilidae		Apidae			Other Diptera			Syrphidae			Wasps			
		$R^2 = 13.4, 65 df$		$R^2 = 21.0$	$R^2 = 21.6, 65 df$		$R^2 = 4.3, 65 df$			$R^2 = 8.2, 65 df$		df	$R^2 = 12.0, 65 df$			$R^2 = 6.8, 65 d$		df	ff $R^2 = 4.3, 65 df$			
		b		Р	b	Р	b		Р		b		Р	b	Р		b		Р	b		Р
Volume Total AAs Total sugars		0.32(6	••	0.368		0.1	74	0:052		0.084			-0.52	2 **		-0.39	3	*	-0.3	30 0.	0.52
Nectar traits	Coleop	tera	Hemip	tera	Long-tongue (excl. Apidae		Othe Dipte		Short- tongue bees		Syrph	idae	was	ps	Andrenid	ae	Anthopho	oridae	Colletie	dae	Megachi	lidae
									0	ver	all coef	ficient	5									
	$R^2 = 34$ 63 d	4.9, f	$R^2 = 4$ 65 d	.4, f	$R^2 = 38.$ 61 df	1,	$R^2 = 41$ 62 d	l .2, lf	$R^2 = 11.4$ 64 df	4,	$R^2 = 3$ 61	32.6, df	$R^2 = 33$ df	.6, 63	$R^2 = 8.8, 64 df$,	$R^2 = 33$ 62 d	.4, f	$R^2 = 8.65 d$.8, f	$R^2 = 32$ 63 di	2.3, f
									Р	arti	al coeff	icients										
	b	Р	b	Р	b	Р	b	Р	b	Р	b	Р	b	Р	b	Р	b	Р	b	Р	b	Р
Volume							-0.484	* **					-0.282	*								
Glucose Fructose Sucrose	0.391	**			0.168	*	0.421	* **	0.310	*	0.443	***	-0.490 0.613	** ***								
Asn	-0.516	***	-0.124	1 *			-0.342	**	-0.286	*			-0.330	**					-0.158	**	-0.271	*
Gaba Trp Met Val	0.363	•			0.371 -0.468	**	0.302	••			0.269 0.320				0.251 		0.331 -0.558 -0.289	***				
Phe					0.189	•											-0.269				0.183	•
Leu H-Ser					-0.962	**											-0.786				-0.551	*

Pollen: a floral primary attractant


- 16-30% proteins, 1-7% starch, 0-15% sugars, 3-10% fats
- starchy (anemophiles) vs. lipid-rich pollen (entomophilous plant spp.)
- rich in nitrogen (N₂)
- different strata: exine (non digestible), entine (digestible)
- pollen producers: *Cistus, Papaver, Paeonia* etc.
- Highly nutritive: proteins, lipids, vitamins etc.

Frain Size: (equatorial

5.9 + 0.3 × 2.9+ 0.2 µm

Pollen: nutritional & energy-supplying resource!

Petanidou & Vokou (1990). Am J Bot 77: 986-992

Pollen as reward in the Mediterranean: dual role

Pollen: a floral primary attractant

_

- Pollen in the Mediterranean: higher calorific value of entomophilous plants vs. anemophiles
- Not in continental systems
- Pollen more important in the arid Mediterranean as an extra fuel resulting from nectar scarcity
- Selection favors increased pollen attractiveness

TABLE 2. Mean pollen caloric content, number of pollinators, and median date of flowering of plant species occurring in a Mediterranean-type ecosystem, as numbered in Table 1. Energy contents are based on three or four samples per species

Plant species	Mean (± S.E.) pollen caloric content (kcal g ⁻¹ ash-free d.w.)	% Difference of max to min value	Number of pollinators; Lepidoptera in parentheses	Median date of flowering period (from 1 January)
Wind-pollina				
-	-	2.99	0	60
1	4.4068 ± 0.0539	4.36	õ	58
2	5.4324 ± 0.0671	4.30	0	90
3	5.6075 ± 0.0677			
4	5.1099 ± 0.0316		0	100
5	5.2584 ± 0.0584		0	118
6	4.9901 ± 0.0790	1.98	0	80
	$\bar{\mathbf{x}} = 5.1342 \pm 0.1711$ Range: 4.4068–5.6075			
Tarana a alling	ted diants			
Insect-pollina			10	100
7	5.9372 ± 0.2713	15.80	18	189
8	5.7476 ± 0.0585		50 (3)	131
9	5.6450 ± 0.0278		39 (1)	104
10	5.4965 ± 0.1459		36(1)	137
11	5.8894 ± 0.0006		70(1)	128
12	5.8086 ± 0.0882		32 (5)	136
13	6.2576 ± 0.1000		65 (5)	115
14	5.8942 ± 0.0310	1.42	39 (3)	105
14	6.0035 ± 0.0469	2.10	10	116
	5.7613 ± 0.0957	2.10	16 (2)	134
16				86
17	5.5156 ± 0.0912		21 (3)	118
18	5.6774 ± 0.0185	0.77	8	111
19	5.1555 ± 0.0439	0.67	14(1)	
20	5.4559 ± 0.0885	9.64	18	272
21	5.5787 ± 0.0426	5.42	5	97
22	6.2954 ± 0.0441	3.98	18 (8)	25
23	6.0730 ± 0.0055		29(1)	169
24	5.1810 ± 0.0932	8.27	27	99
25	5.8315 ± 0.0965		44 (3)	105
26	5.5688 ± 0.0109		1	79
20			-	
	$\bar{\mathbf{x}} = 5.7387 \pm 0.0682$			
Insect_polling	Range: 5.1555–6.2954 ated monocots			
		7.57	10(1)	295
27	5.6834 ± 0.0692		3	295
28	5.4057 ± 0.0476	1.97		
29	5.8668 ± 0.0472	1.47	14(1)	295
30	6.0489 ± 0.0032		10	325
31	5.7289 ± 0.0694	3.20	4	83
32	5.8757 ± 0.1161	8.94	53 (5)	83
33	5.4981 ± 0.1100	6.16	2	86
34	6.1099 ± 0.0717		28 (1)	49
35	5.2792 ± 0.0709		18	100
36	5.7309 ± 0.0265	4.92	37 (3)	70
37	5.8125 ± 0.0262	1.33	31 (4)	259
38	5.3975 ± 0.0896	7.23	9	84
38	5.1912 ± 0.0398	0.16	9	108
40	5.1912 ± 0.0398 5.2123 ± 0.0473	0.10	9	86
40			,	
	$\bar{x} = 5.6315 \pm 0.0809$			
	Range: 5.1912-6.2954			
	Overall $\bar{x} = 5.6105 \pm 0.0588$			

POL-AEGIS (2012–2015)

The POLlinators of the AEGean archipelago: dlversity & ThreatS

Aegis = shield

Basis for improving our understanding on what, where, role of & threats to pollinators aiming at their conservation

POL-AEGIS

The pollinators of the Aegean: diversity & threats

αίγίς, ίδος, ή:

goatskin, worn as a dress; esp. the skin **shield** of Zeus, lent by him to Athena; later, with fringe of snakes and Gorgon's head, the **aegis of Athena**

L-S-J Lexicon

\wedge	T 8 dM	WP 9	WP 10						
WP 3		WP 4	WP 5	WP 6	WP 7	TRAINING -	DISSEMI	PROJE(
Climate change		Intense eekeeping	Over-grazing (husbandry) THREATS	Frequent fires	Electro- magnetic fields	- TRANSFER OF KNOW-HOW	DISSEMINATION OF RESULTS	PROJECT CO-ORDINATION	
						R OF F	RESU	NATIC	
WP 1	WP 1 POLLINATOR DIVERSITY IN THE AEGEAN								
WP 2	PC	WOI							

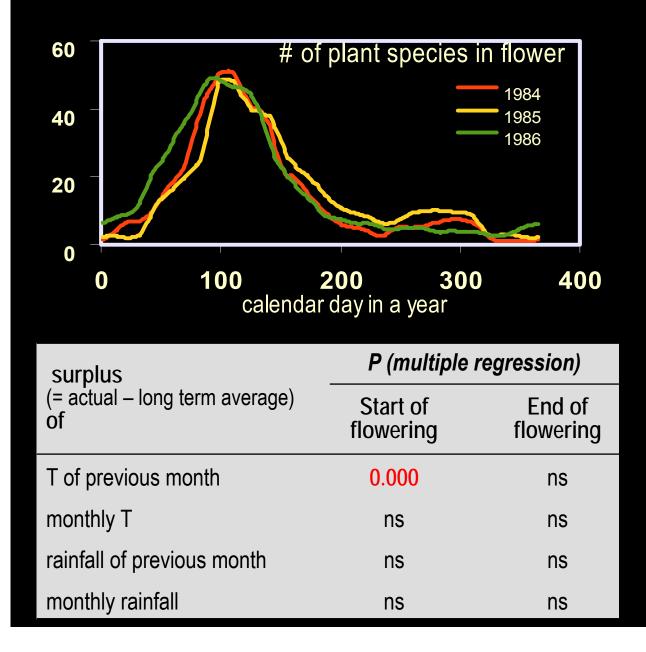
Direct goals:

- 1. Knowledge on the pollinating fauna of the Aegean
- 2. Knowledge on the threats to apply pollinator-friendly management
- 3. Creation of infrastructures and tools for the future (Melissotheque of the Aegean, Taxonomic human capital & keys)
- 4. Data base for future monitoring

Long-term goal:

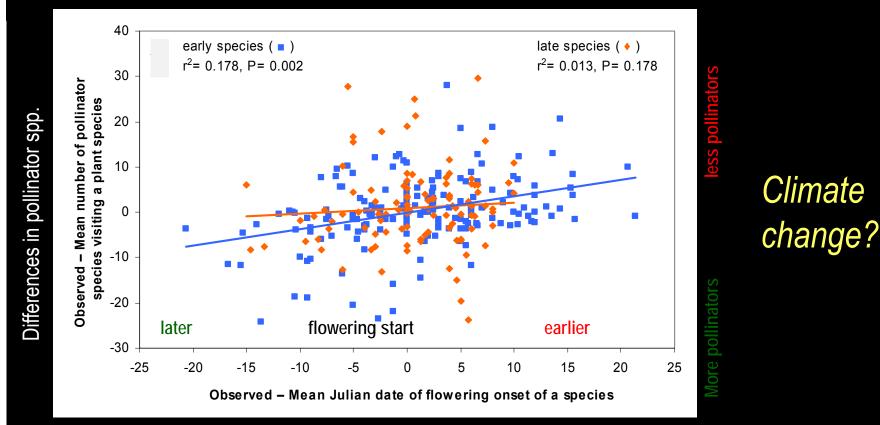
Safeguard wild pollinators in the Aegean

The Melissotheque of the Aegean



- Collection of bees a.o. pollinators from the Aegean
- Fully databased
- Total of ca. 250,000 specimens + records (≈80% ided)
 >850 bee species
 >600 hoverfly, bee fly, a.o. species
 > 30 species new for science

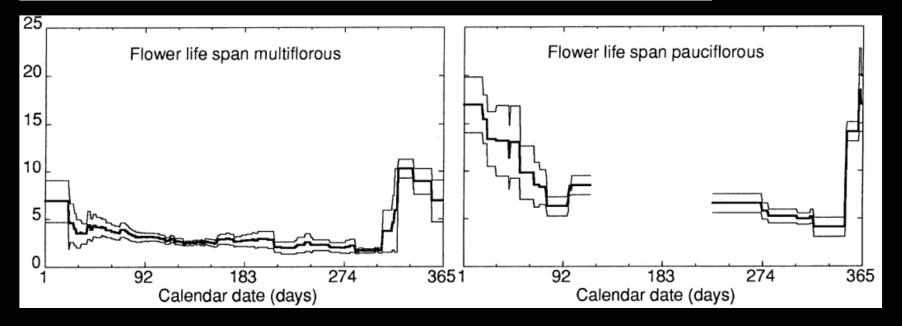
Will climate change challenge nectar secretion?


Inter-annual changes in flowering phenology

Petanidou et al. (1995). Am J Bot 82: 607-620

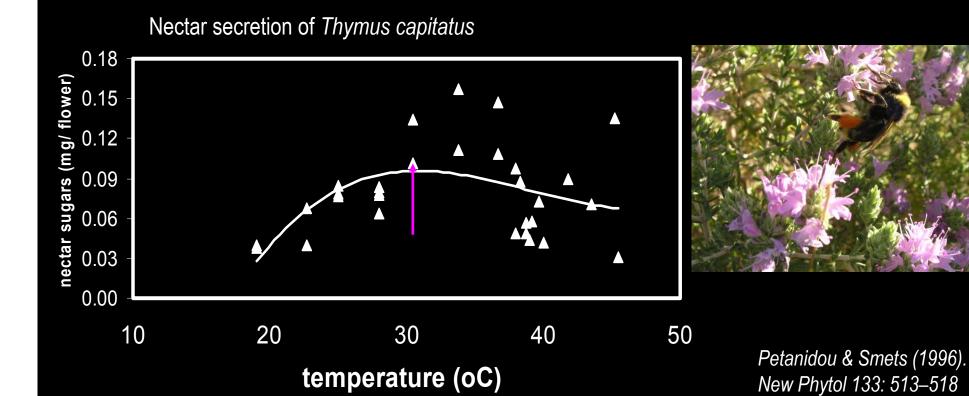
- Seasonality
- Significant shift in the start of flowering between years
- Flowering onset is T-dependent

Inter-annual changes in flower-bee interactions


Differences in flowering start (per species)

Petanidou et al. (2014). Acta Oecol 59: 104–111

Flowering earlier: Fewer pollinators available


Seasonal variations of flower-life span & flowering duration

		D)F	Flower life span			
	N	Mean (days)	SE	Mean (days)	SE		
All species	133	55.1	2.25	3.5	0.30		
Main flowering period Between main and secondary Secondary flowering period Winter	88 20 10 15	51.5 66.6 46.9 66.4	2.11 8.92 6.79 8.10	3.2 2.6 2.7 7.1	0.30 0.52 0.61 1.60		

Flower life-span & flowering duration lower in summer vs. winter

Nectar secretion decreases with temperature

- Typical summer flowering species; well adapted to drought
- Nectar secretion decreases after 30°C

Study plants, 2013–2015

Experimental setting

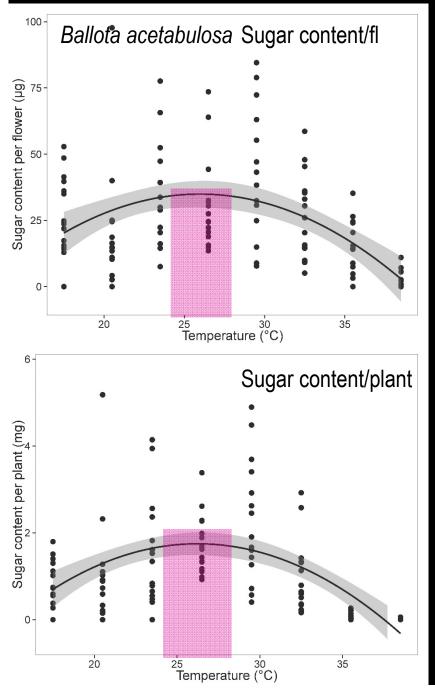
climate chamber: controlled T, RH
outdoors (natural conditions: standardize for the effect of flowering stress/span)
Plants not water-stressed

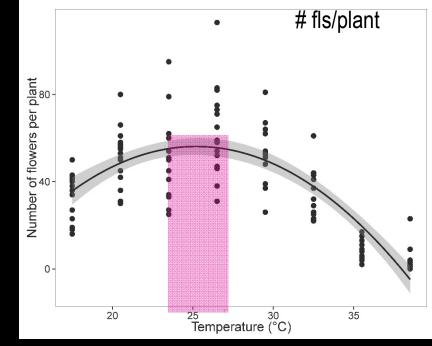
Measurements:

- Nectar volume/ fl; concentration/ fl
- Nectar sugars/ fl
- # flowers/ plant

Development of experimental plants collected in nature

Raising of experimental plants collected in nature

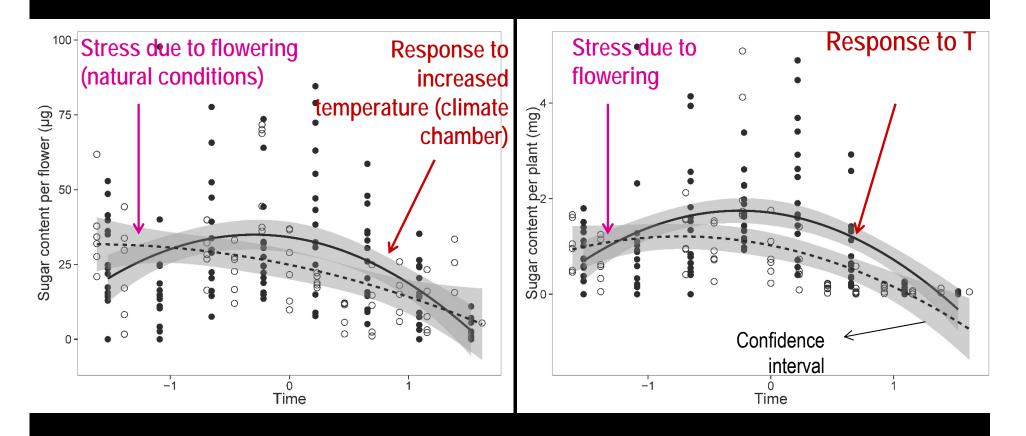

Raised from seeds


- Echium plantagineum
- Brassica napus
- Ballota acetabulosa

Collected as mature plants

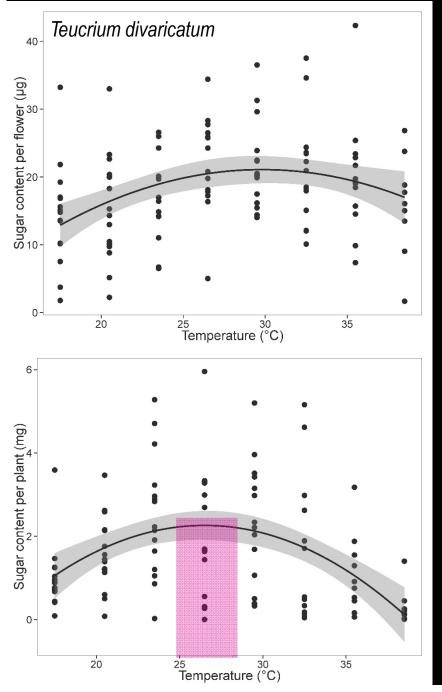
- Asphodelus ramosus
- Rosmarinus officinalis
- Lavandula stoechas
- Teucrium divaricatum

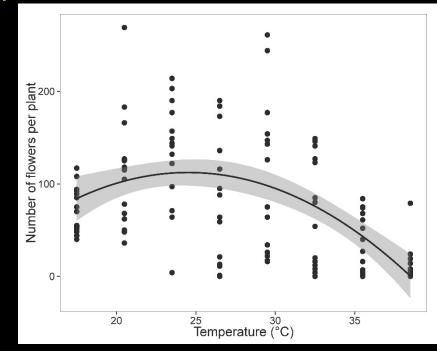
Does nectar secretion follow temperature increase?



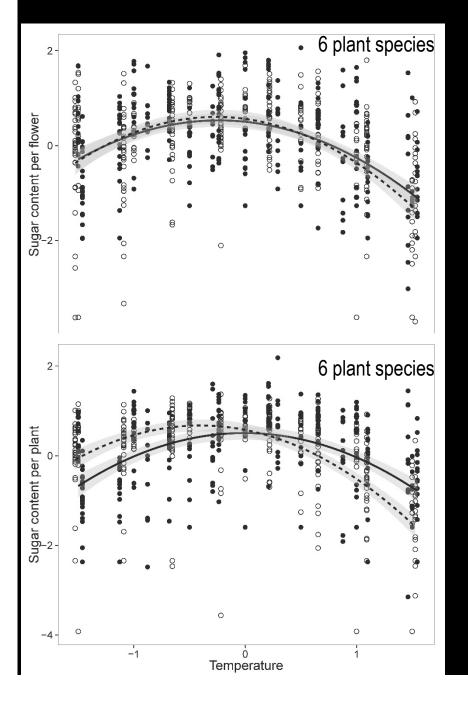
Takkis et al. (2015). AoB Plants 1-13

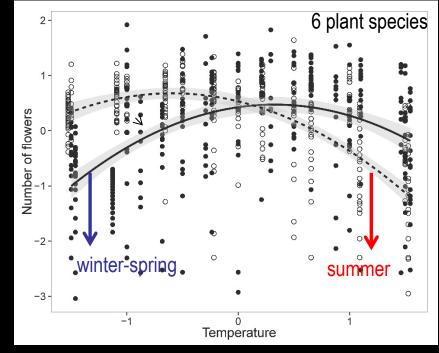
- Higher secretion
- Maximal sugar secretion: 24–27°C
- Thereafter, dramatic decrease


In all experiments we considered the stress from flowering duration

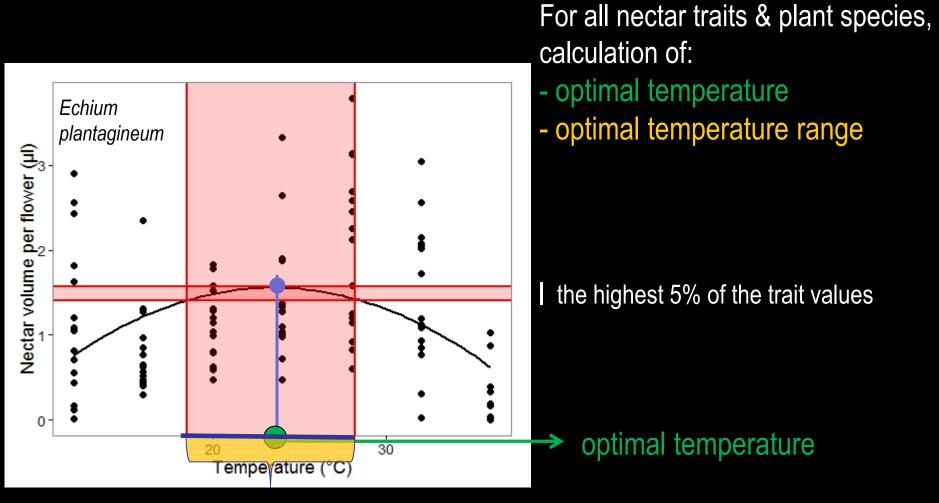

Experiments on Ballota acetabulosa : sugars contained in the nectar

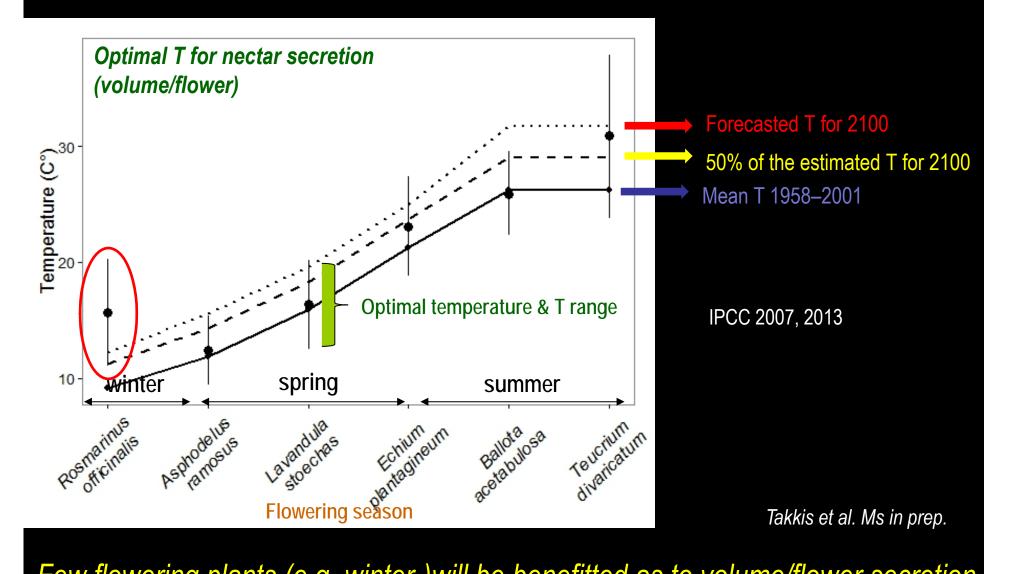
Takkis et al. (2015). AoB Plants 1-13


Does nectar secretion follow temperature increase?

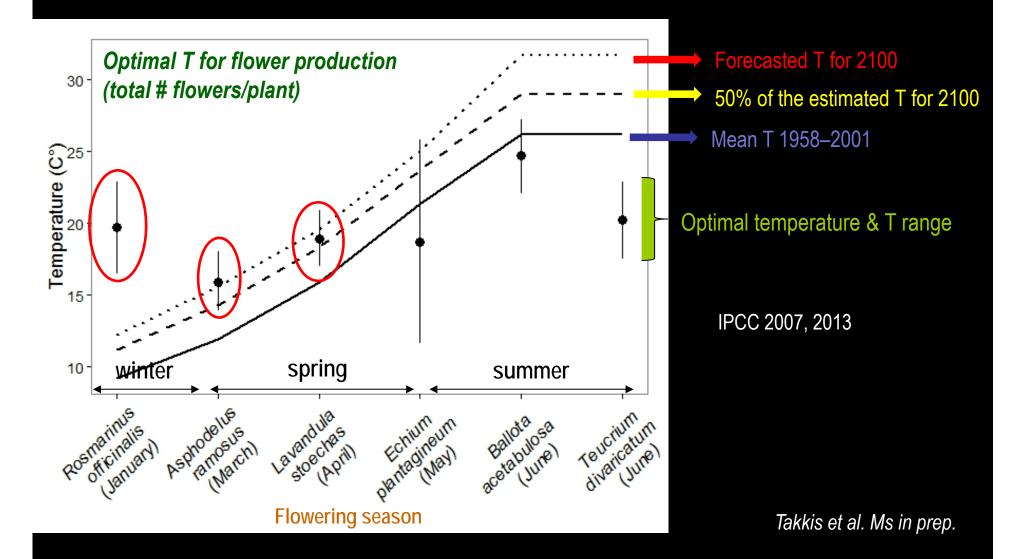


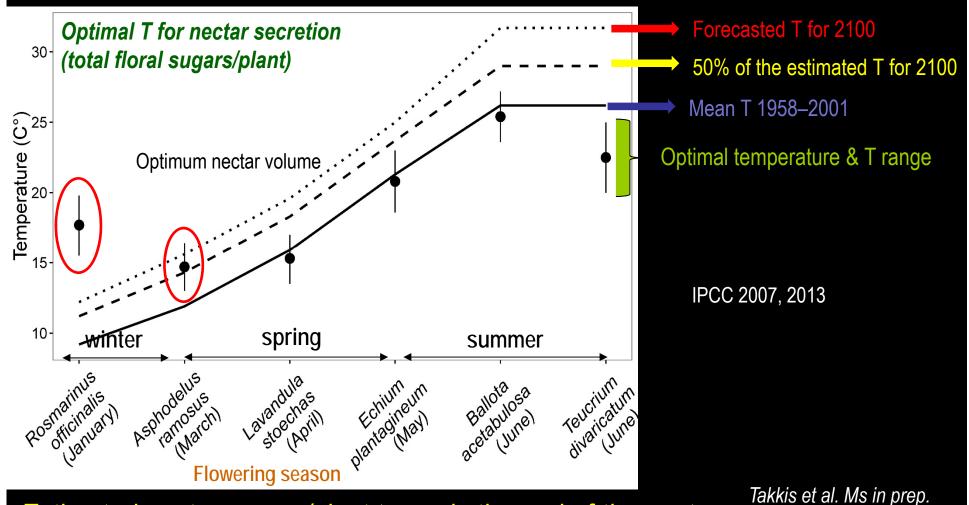
- Higher secretion
- Maximal sugar secretion: 25–28°C
- Thereafter, dramatic decrease


Does nectar secretion follow temperature increase?

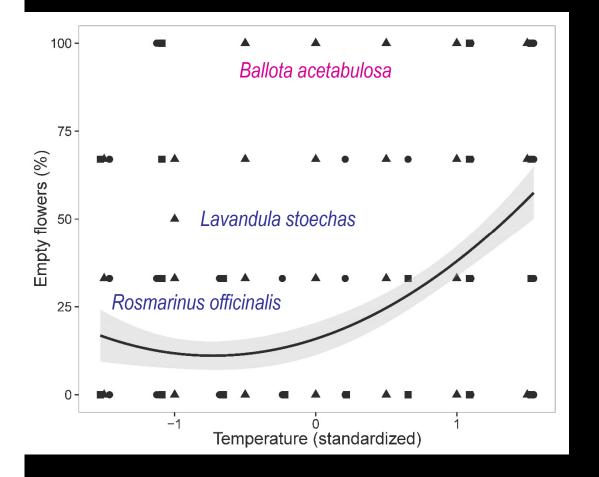


With temperature increase:


- summer-flowering species suffer decreased nectar secretion
- winter-spring are benefited


optimal temperature range

Few flowering plants (e.g. winter-)will be benefitted as to volume/flower secretion Bees have to work more between plants for water uptake (sub-optimal foraging)


Winter- & spring flowering plants will be benefitted as to flower production

Estimated nectar sugars/plant towards the end of the century

- summer- & spring-flowering plants will be dramatically stressed
- winter & early-spring flowering plants will be benefited

Another effect temperature increase: empty flowers!

3 species with many empty flowers!

Most of them Lamiaceae $(\frac{3}{4})$

T increases emptiness

Foreseen: impacts on honeybee behavior

Conclusions I: effects on flowering plants

Flowering time

- Shift towards winter, especially the spring-flowering plants

Nectar secretion

- Unstable weather conditions (low T):
 - longer flower span, larger duration
 - but less nectar/flower, maybe smaller flowers
- Better performance of winter flowering plants (e.g. rosemary)

Pollen-flower plants

- May take over vs. nectar-flower plants

Conclusions II: imminent effects on bee-keeping

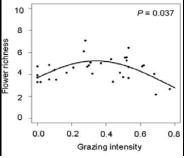
Direct effects on honeybees

- Sub-optimal foraging in summer, but also in spring!
- Low-foraging summer period will be more critical both for hive sustenance (food provision by bee-keeper) and breeding
- Higher hb competition (intra-, hetero-specific) for nectar in spring

Quantity and quality of honey yield

- Topmost nectar/honey yields will be confined in winter, and (less) in early spring & autumn
- More difficult to obtain unmixed yields (i.e. one-plant honey)
- Significant honey labels may be challenged (e.g. thyme)

Conclusions III: adaptive actions in the Mediterranean Bees


- Need to sustain bees for longer periods or move them more drastically in new forage areas (higher latitudes/elevations)

Foraging flora

- Create/conserve natural honeybee gardens enriched with nectariferous plants
- Combine with pollination of existing orchards
- Combine bee-keeping with plantations of aromatic plants
- Encourage the creation of flowering gardens vs. lawns
- Control overgrazing; keep the mosaic in Mediterranean systems

Business

- Create new products (e.g. rosemary honey?)
- Combine with pollination?

